Dalam kehidupan sehari-hari, kita sering menjumpai permasalahan yang melibatkan volume. Misalnya, ketika kita pergi ke swalayan untuk membeli makanan instan, sebaiknya kita membandingkan volume dan harga dari beberapa item untuk melakukan pembelian yang bijaksana. Berbagai macam profesi juga sering menggunakan volume dalam membantu pekerjaan mereka. Seorang insinyur bangunan harus menghitung volume dan berat dari bagian-bagian jembatan untuk menghindari terlalu banyak tekanan dari masing-masing bagian-bagian tersebut. Fisikawan, kimiawan, dan ilmuwan lainnya harus dapat melakukan penghitungan volume dengan sangat cermat pada setiap penelitiannya. Seorang koki juga harus dapat menghitung volume komposisi bahan makanan yang akan mereka masak secara tepat agar menghasilkan masakan yang lezat.
Volume adalah ukuran yang menyatakan jumlah ruang yang terkandung dalam bangun ruang. Kita gunakan satuan kubik untuk mengukur volume dari suatu benda: centimeter kubik (cm3), meter kubik (m3), inchi kubik (in3), dan sebagainya. Volume dari suatu benda merupakan banyaknya kubus satuan yang dapat mengisi secara penuh objek tersebut.
Investigasi: Menemukan Rumus Volume Prisma dan Tabung
Untuk menemukan rumus dalam menghitung volume prisma dan tabung, lakukan langkah-langkah berikut:
Langkah 1: Tentukan volume dari masing-masing prisma segiempat berikut dengan satuan cm3! Untuk menghitung volume dari masing-masing prisma tersebut, hitunglah banyaknya kubus satuan yang dimuat oleh prisma tersebut.
Perhatikan bahwa banyaknya kubus satuan yang ada di alas sama dengan banyaknya persegi satuan yang menempati alas tersebut. Demikian juga dengan banyaknya lapisan kubus satuan sama dengan banyaknya satuan tinggi dari prisma tersebut. Sehingga kita dapat menggunakan luas daerah alas dan tinggi dari prisma tersebut untuk menemukan volume prisma tersebut.
Rumus Volume Prisma Segi EmpatJika A adalah luas alas prisma dan t adalah tinggi dari prisma, maka volume dari prisma segi empat adalah V = A ∙ t
Langkah 2: Rumus di atas juga dapat digunakan untuk menghitung volume prisma tegak yang memiliki alas bukan segi empat.
Pada prisma tegak sembarang, banyaknya kubus satuan yang menempati sisi alas sama dengan banyaknya persegi satuan yang menempati sisi alas, demikian juga dengan banyaknya lapisan kubus satuan sama dengan banyaknya satuan tinggi dari prisma tegak tersebut. Sehingga dapat diperoleh kesimpulan sebagai berikut.
Rumus Volume Prisma-Tabung TegakJika A adalah luas alas prisma dan t adalah tinggi dari prisma, maka volume dari prisma tegak adalah V = A ∙ t
Langkah 3: Bagaimana dengan volume dari prisma atau tabung miring? Kamu dapat memperkirakan volume prisma miring dengan menyusun tumpukan kertas A4. Susunlah 3 rim kertas A4 seperti gambar berikut.
Tumpukan pertama, kertas dikumpulkan per rim. Sedangkan tumpukan kedua, kertas 3 rim digabung jadi satu. Pada tumpukan kedua ini bentuknya mendekati bentuk prisma miring. Padahal yang kita susun adalah kertas yang sama, sehingga volumenya adalah tetap. Apa yang dapat disimpulkan? Volume prisma dan tabung miring sama dengan volume prisma dan tabung tegak.
Rumus Volume Prisma-Tabung MiringJika A adalah luas alas prisma dan t adalah tinggi dari prisma, maka volume dari prisma miring adalah V = A ∙ t
Langkah 5: Pada akhirnya, kita telah menemukan rumus volume dari prisma dan tabung tegak ataupun miring. Kedua rumus yang kita dapatkan adalah sama.
Rumus Volume Prisma dan TabungVolume dari prisma dan tabung adalah luas alas dikalikan dengan tingginya
Kita telah menemukan rumus volume dari prisma dan tabung. Dari rumus yang kita dapatkan, volume prisma dan tabung dapat dicari dengan mengalikan luas alas dengan tingginya, apapun bentuk dari alasnya. Pada prisma dan tabung miring, rusuk yang tidak sejajar dengan bidang alas, juga tidak tegak lurus dengan bidang alas. Sehingga kita tidak dapat menggunakan panjang dari rusuk tersebut sebagai tinggi dari prisma atau tabung miring tersebut.
Pengertian Prisma
Suatu bangun ruang yang bentuk dan ukuran sisi atas dengan sisi bawah sama serta rusuk-rusuk tegak yang sejajar disebut prisma.
Sebuah bangun prisma ditentukan oleh bentuk alasnya. Maksudnya bahwa penamaan suatu prisma berdasarkan bentuk alasnya, contohnya, suatu bangun prisma yang alasnya berbentuk segitiga maka dinamakan prisma segitiga, prisma yang alasnya berbentuk segiempat maka dinamakan prisma segiempat, prisma yang alasnya berbentuk segi-lima maka dinamakan prisma segi-lima, dan seterunya.
Jenis-Jenis Prisma
Seperti yang dijelaskan di atas bahwa penamaan prisma detentukan oleh bentuk alasnya maka prisma ada banyak jenis. Berikut adalah beberapa diantaranya:
1. Prisma segitiga
Prisma segitiga adalah prisma yang bentuk alas dan atapnya berbentuk segitiga. Unsur yang dimiliki prisma segitiga ABC.DEF adalah sebagai berikut:
- Sisi/bidang = memiliki 5 sisi atau bidang yaitu sisi alas (ABC), sisi atas (DEF), dan tiga sisi tegak (ABED, BCFE, ACFD)
- Rusuk = memiliki 9 rusuk yaitu rusuk alas (AB, BC, AC), rusuk atas (DE, EF, DF) Rusuk tegak (AD, BE, dan CF)
- Titik Sudut = memiliki 8 titik sudut yaitu titik sudut A, B, C, D, E, F, G dan H.
2. Prisma Segiempat
Prisma segiempat adalah prisma yang bentuk alas dan atapnya berbentuk segiempat. Unsur yang dimiliki prisma segiempat ABCD.EFGH adalah sebagai berikut:
- Sisi/bidang = memiliki 6 sisi atau bidang yaitu sisi alas (ABCD), sisi atas (EFGH) dan empat sisi tegak ABFE, BCHF, CDGH dan ADGE
- Rusuk = memiliki 12 rusuk yaitu rusuk alas (AB, BC, CD, DA), rusuk atas (EF, FH, GH, EG), rusuk tegak (EA, FB, HC, GD)
- Titik Sudut = memiliki 8 titik sudut yaitu titik sudut A, B, C, D, E, F, G dan H.
3. Prisma Segi-lima
Prisma segi-lima adalah prisma yang bentuk alas dan atapnya berbentuk segi-lima. Unsur yang dimiliki prisma segi-lima ABCDE.FGHIJ adalah sebagai berikut:
- Sisi/bidang = memiliki 7 sisi atau bidang yaitu sisi alas (ABCDE), sisi atas (FGHIJ), Sisi tegak (ABGF, BCHG, CDIH, DEJI, AEJF)
- Rusuk = memiliki 15 rusuk yaitu rusuk alas (AB, BC, CD, DE, EA), Rusuk atas (FG, GH, HI, IJ, JF) rusuk tegak (FA, GH, HI, IJ, JE)
- Titik Sudut = memiliki 10 titik sudut yaitu titik sudut A, B, C, D, E, F, G, H, I, dan J
4. Prisma Segi-n
Untuk prisma segienam, segitujuh,…., Segi-n anda dapat menggunakan
Banyak sisi/bidang prisma segi-n = n + 2
Banyak rusuk prisma segi-n = 3n
Banyak titik sudut prisma segi-n = 2n
Rumus Prisma
1. Volume Prisma
Untuk menghitung besar volume prisma digunakan rumus:
Volume = Luas alas x tinggi
Dimana tinggi adalah tinggi prisma
Misalnya:
Volume Prisma segitiga = Luas alas x t
= (1/2xalasxtinggi) x t
Volume Prisma segiempat = Luas alas x t
= (p x l) x t
2. Luas permukaan prisma
Untuk menghitung luas permukaan prisma digunakan rumus:
Luas = Jumlah luas bidang-bidang sisinya
= Luas alas + luas atas + luas selubungnya
Contoh Soal prisma
1. Sebuah prisma segitiga tegak alasnya berbentuk segitiga siku-siku, dengan panjang rusuk alasnya 4 cm, 3 cm, 5 cm dengan tinggi prisma 10 cm. Hitunglah:
a. Volume prisma
b. Luas permukaan prisma
Penyelesaian
Luas segitiga = ½ x alas x tinggi
= ½ x 4 cm x 3 cm
= ½ x 12 cm2
= 6 cm2
Luas selubung prisma = [(4 x 10) + (5 x 10) + (3 x 10)]
= (40 + 50 + 30) cm2
= 120 cm2
1. Volume Prisma Segitiga = Luas alas x tinggi
= 6 cm2 x 10 cm
= 60 cm3
2. Luas permukaan prisma
= Luas alas + luas atas + luas selubungnya
= 6 cm2 + 6 cm2 + 120 cm2
= 132 cm2
2.Suatu bangun prisma segitiga terbuat dari karton, alasnya berbentuk segitiga siku-siku dengan sisi siku-siku 3 cm dan 4 cm. Apabila tinggi prisma 5 cm, berapa luas karton yang diperlukan?
Penyelesaian
BC2 = 32 + 42
= 9 + 15 = 25
BC = 25 = 5 cm
Luas sisi Alas ABC = Luas sisi Atas DEF = ½ x 3 x 4 = 6 cm2
Luas selubung ABED = 4 cm x 5 cm = 20 cm2
Luas selubung ACFD = 3 cm x 5 cm = 15 cm2
Luas selubung BCFE = 5 cm x 5 cm = 25 cm2
Jadi, luas karton yang diperlukan (luas sisi prisma)
= 6 cm2 + 6 cm2 + 20 cm2 + 15 cm2 + 25 cm2 = 72 cm2
Tidak ada komentar:
Posting Komentar